.boxed { border: 1px solid green ; }
College

This Is Why…

Joanne O’Meara, Professor, Department of Physics, University of Guelph
omeara@uoguelph.ca

When people think about what physicists do, they often jump directly to the esoteric, like quarks or globular clusters, and don’t necessarily see the myriad connections of physics to our everyday experiences. I’m not criticizing those among us devoted to the esoteric, but I do worry that we are missing out on inspiring and engaging with a large fraction of the science-curious by not taking the time to explore some of the fascinating physics on display in the natural world. As physicists, we are practiced at the art of asking ourselves Why? when we observe something beautiful, unusual, or unexpected, and the feeling that comes from figuring out the answer is what keeps us exploring. I love being able to bring these little explorations into my classroom, especially when I’m teaching first-year physics to biological science students, as helping them to see the relevance of what they are learning can have a profound effect on their motivation. From the beauty of a double rainbow, to penguins using bubbles to reduce drag, or the effect of polarization of scattered light on flies looking for someone/thing to bite, I love that look of wonder and appreciation on my students’ faces when we take a short tangent to extend our learning in optics or mechanics. Read More...

How Strong of a Vacuum Can You Make with Your Mouth?

Eric Haller, Occasional Secondary School Teacher, Peel District School Board
eric.haller@peelsb.com

This summer I had the opportunity to teach the grade 12 college-level physics course for the first time.

Due to the nature of summer school in my board, I was not given access to any of the school’s science equipment or textbooks; thus, I had to come up with plenty of simple, wallet-friendly, hands-on activities for the students. While I came up with a few good experiments and demonstrations, my favourite activity was an experiment to see how much my students ‘suck’; or in more professional and appropriate terms, how strong of a vacuum they could create with only their mouths. To measure this, all you need is a long straw and some water. Keep reading to find out how! Read More...

Controlled Experiments with Three Factors in SPH4C Grade 12 College Physics

Tim McCarthy, Teacher, St. Ignatius of Loyola Catholic Secondary School
mccarthyt@hcdsb.org

Controlled experiments with three factors are a great way for physics students to practice identifying and testing factors that may affect a situation. They provide an excellent opportunity to practice the Scientific Investigation Skills found in Strand A. The students are provided with a situation, brainstorm possible factors that may affect the situation, reduce the list of factors to three that can be tested in the physics lab, develop hypotheses, design procedures to test the factors, test the factors, analyze the data, perform experimental error analysis, and draw conclusions on the effects the three factors have had on the original situation.

My struggle has been to find situations that easily fit this format and that also match the curriculum specific expectations. I have created one three-factor controlled experiment for each of the six units in my 12C physics course. The three-factor experiment in the first unit is used as assessment for learning (formative) to teach the students how to do a controlled experiment. The remaining five experiments are used as assessment of learning (summative). Simulations are used for some experiments as I do not have the necessary equipment to perform all them in the lab. Read More...

Intersection Traffic Signals: Coding to Control Series and Parallel Circuits in Grade 12 College Physics and Grade 11 University Physics

Tim McCarthy, Teacher, St. Ignatius of Loyola Catholic Secondary School, Oakville, ON
mccarthyt@hcdsb.org

Coding is an important skill for physics students to learn. Grade 12 College and Grade 11 University physics students must build series and parallel circuits, so why not use coding to control them and model an everyday, real-world situation? This can be done by first using TinkerCAD simulations, followed by construction of the simulation using real components; Arduino UNO R3 microcontroller boards, breadboards, LEDs, resistors and wires. Students have a high level of satisfaction as they complete a task that is brand new to most and learn skills that they are likely to need in their post-secondary education. Read More...

Building Confidence and Motivation with Short Building Projects

Margaret Scora, OAPT Past President,
mscora@sympatico.ca

Roberta Tevlin, Editor OAPT Newsletter, teacher Danforth CTI
roberta@tevlin.ca

Mari-Ann Goettsch, teacher at Georgetown DHS
goettschm@hdsb.ca

Over the past couple of decades there has been a dramatic decline in students’ abilities to build and solve hands-on challenges. They are well versed in virtual reality but they don’t have much experience in how to work with materials. This is a shame. They are at a disadvantage when learning physics concepts and they will have huge problems with large projects like trebuchets or Rube-Goldberg machines. In this article we will describe a number of very short hands-on projects that provide opportunities to build stuff using cheap materials. Read More...

College Physics: Electronic Literacy and Numeracy

Roberta Tevlin, Teacher Danforth CTI, OAPT Newsletter Editor
roberta@tevlin.ca

I am teaching the college physics course for the first time. My thirty years of teaching 12U physics and grade 9 science has not been a great guide for this. After two months, I am still struggling. Many of my lessons didn’t go the way I expected and some of them didn’t work at all!

Fortunately, two assignments did work well and in this article I will describe what I did and why I think they worked. Read More...
©Ontario Association of Physics Teachers Contact the Newsletter