.boxed { border: 1px solid green ; }

Scientific Models for Electrical Polarization: A Close Look at Grade 9 Static Electricity

Chris Meyer, Past President, Ontario Association of Physics Teachers
chris_meyer1@sympatico.ca

Why explore the idea of polarization?
A good way to learn about static electricity is by exploring things around us: run a comb through your hair, peel different fabrics apart, go down a plastic slide in a playground, there's so many possibilities! Another common one is the rubbed balloon sticking to a wall: an example of a charged and uncharged object interacting that requires some subtle science to explain. The grade 6 science curriculum mentions examples like this but leaves out the scientific tools to properly explain it. The grade 9 curriculum mentions charging by induction and again leaves out the science. Electrical interactions form the conceptual backbone for an understanding of atoms and molecules, electric circuits and fields, and why those annoying bits of Styrofoam keep sticking to our hands! The missing idea from the curriculum is polarization, a concept that explains the attraction between a charged and neutral object. Polarization also serves as a conceptual bridge between the topics of static and current electricity, which are often taught as two distinct topics. The curriculum provides a poor road map for learning about electricity; it will pay us great dividends as teachers to do a better job of this, so let's explore polarization! I want to share with you two lessons for grade 9 science that focus on this important electrical concept. Read More...

Teaching Astronomy by Inquiry: Light and Chemistry!

Chris Meyer, OAPT Past President, TDSB hybrid teacher-coach
Christopher.meyer@tdsb.on.ca

Back in the day, I used to teach at the Ontario Science Centre and present their school programs. I would meet the visiting teacher and mob of grade 9 students in advance of my “Cosmic Connections” program and ask, “So has your class covered the astronomy unit yet?” On more than one occasion, the teacher answered, “No. You’re it!” That’s right; my 45-minute extravaganza was all the astronomy that students would get in grade 9. Despite fifteen years passing since then, the topic of astronomy still does not fall within every teacher’s comfort zone, so I hope that sharing the resources for our inquiry-based unit on grade 9 astronomy will help. In this article I will explain the ideas and pedagogical design of our unit and hopefully encourage you to check it out!

This is the second part of Chris’s article on teaching astronomy by inquiry. For the first part, please go here. Read More...

Teaching Astronomy by Inquiry: The Sun, Moon, and Math

Chris Meyer, OAPT Past President, TDSB hybrid teacher-coach
Christopher.meyer@tdsb.on.ca

Back in the day, I used to teach at the Ontario Science Centre and present their school programs. I would meet the visiting teacher and mob of grade 9 students in advance of my “Cosmic Connections” program and ask, “So has your class covered the astronomy unit yet?” On more than one occasion, the teacher answered, “No. You’re it!” That’s right; my 45-minute extravaganza was all the astronomy that students would get in grade 9. Despite fifteen years passing since then, the topic of astronomy still does not fall within every teacher’s comfort zone, so I hope that sharing the resources for our inquiry-based unit on grade 9 astronomy will help. In this article I will explain the ideas and pedagogical design of our unit and hopefully encourage you to check it out! Read More...

KineCards: A Manipulative Activity for Teaching Kinematics

Robert Prior, ePublisher of OAPT Newsletter
science@robertprior.ca

Many of our students struggle with mastering the relationship between position-time graphs and velocity-time graphs. They may know that the velocity-time graph shows the slope of a position-time graph, or that the position-time graph shows the area under the velocity-time graph, but they have trouble telling if two graphs are related except by actually doing the calculations.

We all know that practice makes perfect, but drawing many graphs takes lots of time, and time is in short supply. This activity uses pre-drawn graphs so students spend time thinking rather than drawing. Read More...

This Is Why…

Joanne O’Meara, Professor, Department of Physics, University of Guelph
omeara@uoguelph.ca

When people think about what physicists do, they often jump directly to the esoteric, like quarks or globular clusters, and don’t necessarily see the myriad connections of physics to our everyday experiences. I’m not criticizing those among us devoted to the esoteric, but I do worry that we are missing out on inspiring and engaging with a large fraction of the science-curious by not taking the time to explore some of the fascinating physics on display in the natural world. As physicists, we are practiced at the art of asking ourselves Why? when we observe something beautiful, unusual, or unexpected, and the feeling that comes from figuring out the answer is what keeps us exploring. I love being able to bring these little explorations into my classroom, especially when I’m teaching first-year physics to biological science students, as helping them to see the relevance of what they are learning can have a profound effect on their motivation. From the beauty of a double rainbow, to penguins using bubbles to reduce drag, or the effect of polarization of scattered light on flies looking for someone/thing to bite, I love that look of wonder and appreciation on my students’ faces when we take a short tangent to extend our learning in optics or mechanics. Read More...

Call for Articles

It’s the start of another school year and the OAPT is looking for submissions for the newsletter. The newsletter is kept alive by volunteers who contribute their thoughts and ideas for others to use in their own classrooms. Many of our writers are Ontario high school teachers, however some of our writers teach in university, live abroad, have retired, or have even left the teaching profession for some other career that involves physics. We have many writers who pen something for us regularly, but we are always on the lookout for new writers as well (writing for us looks great on a resume if you’re relatively new to teaching). We accept and publish articles year-round. Typically, our articles are aimed at the grade 11 and 12 Ontario physics curricula, however sometimes we publish articles regarding physics in grade 9 and 10 science, or about physics in general. Read More...

Diversity

Adam Mills, President of the OAPT
adam_mills@wecdsb.on.ca

Being a heterosexual, Caucasian male I am hardly an authority on diversity; however, my school community consists of many diverse cultures, races and religions. As such I have been attempting to make a conscious effort to better connect with my students, by ensuring that they gain an understanding that there do exist many physicists that are indeed non-Caucasian, non-male with various sexual orientations. This brief article will explore a few of the techniques, resources and ideas I am implementing in my classroom that you can easily incorporate into yours tomorrow! Read More...

Review: Professor Povey’s Perplexing Problems

Vjera Miović, OAPT Newsletter Editor, TDSB teacher
vjera.miovic@gmail.com

If you are like me, maybe you miss discussing random physics problems with nerdy friends who are scattered around the pandemic-stricken globe. Or you just like interesting puzzles, beyond sudoku and crosswords. Perhaps you are looking for challenging problems for your eager senior students or a contest-prep science club. Here is a good summer read for you: Professor Povey’s Perplexing Problems, by Thomas Povey (2015). Read More...

Reflecting on 2020-2021

Ashley McCarl Palmer, Waterloo Region District School Board, OAPT Vice-President
ashley_mccarlpalmer@wrdsb.ca or @physicswithmcp on Instagram, Twitter and YouTube

As we move into the end of a very difficult and challenging school year, I think it is natural to take some time to reflect on where we are now compared to where we were last September (or even last winter, pre-pandemic). Once you’ve taken some time to do what makes you happy, refill the tank or bucket or whatever metaphor you wish to use, and feel like you have the energy, I encourage you to reflect on what we've all accomplished as a community of educators. Some things we have had to learn quickly, like a new technology platform, or perhaps a different approach that has surfaced in the classroom when we were forced into hybrid or distance learning. I think it's good for all teachers to think about practices we’ve used over a school year and think about which ones we’d like to keep and what we will let go of and thank them for what they have given us (a little Marie Kondo for those of you who, like me, ended up organizing the house last March after watching her show on Netflix). Read More...

The Rifleman’s Rule

Eric Haller, Secondary Long Term Occasional Teacher, Peel District School Board
eric.haller@peelsb.com

A couple of years ago I bought a bow and got into the sport of archery. To improve my accuracy at the range, I decided to invest in a laser rangefinder that could tell me the distance to my target, and its angle of elevation/depression. After using it for the first time, I discovered a third feature I was not aware of, the “Angle Intelligence™ Distance” (as it is referred to in the HALO OPTICS user’s manual). Interestingly, the rangefinder takes the angle of elevation/depression and the line-of-sight distance to the target into account, and calculates the adjusted distance to the target, as though I were instead shooting at a target across a perfectly horizontal field. Reading through the entire user’s manual, I couldn’t find any mention of what formula they used for the calculation, so I figured I would try working it out for myself. After a few hours of trying with a pen and paper, I discovered it was a lot more difficult of a problem than I had initially thought; so I turned to the internet. I eventually found the formula I was looking for; named the “rifleman’s rule.” The rule is fairly complicated to derive, however no part of the derivation requires anything beyond a grade 12 understanding of physics or math. This article will guide you through the derivation of the rifleman’s rule. You could work through it with your students, use this knowledge to help your school’s archery team, or even perhaps use it in the field yourself. Read More...

Physics for Penguins: A Project for Grade 10 Science

Robert Prior, ePublisher of OAPT Newsletter
science@robertprior.ca

The grade ten climate unit is often neglected. This is unfortunate, not only because it is the most relevant unit for our students, who will be dealing with a changing climate, but because it deals with many physics concepts.

Here is a project I use with my grade ten students. It’s a fun, hands-on way for students to demonstrate that they understand basic concepts relating to thermal energy and energy transfer — key topics in grade 11 physics! Read More...

Fast Feedback

Felipe Almeida, Toronto District School Board
felipe.almeida@tdsb.on.ca

As every student in an introductory physics course (like SPH3U, the grade 11 physics course in Ontario) is untrained, all their practice should be portioned appropriately in both task and problem. I have created scaffolded practice problems for the grade 11 physics course in Google Forms so students can submit their responses for immediate feedback. The forms are intended to save time and make practice/‘homework’ more meaningful and rewarding for both teachers and students. A previous article presented the forms used for portioned practice, this article will present fast feedback.
Read More...

Portioned Practice

Felipe Almeida, Toronto District School Board
felipe.almeida@tdsb.on.ca

As every student in an introductory physics course (like SPH3U, the grade 11 physics course in Ontario) is untrained, all their practice should be portioned appropriately in both task and problem. I have created scaffolded practice problems for the grade 11 physics course in Google Forms so students can submit their responses for immediate feedback. The forms are intended to save time and make practice/‘homework’ more meaningful and rewarding for both teachers and students. This article presents the forms used for portioned practice, a future article will present fast feedback. Read More...

The Plinko Model for Energy in Electric Circuits

Chris Meyer, President, Ontario Association of Physics Teachers
chris_meyer1@sympatico.ca

When it comes to the study of electricity, it is the simplest ideas that students understand the worst. This is because electricity does its thing invisibly, so our job as teachers is to help make those microscopic goings-on visible. To do this, we create conceptual models that allow us to visualize what happens inside a circuit. I would like to share with you the resources I have created. Read More...

Red-Hot Steel vs. Frozen Lake: A Real-World Energy Problem

Robert Prior, ePublisher of OAPT Newsletter
science@robertprior.ca

What happens when you heat a 20 kg cylinder of steel red-hot, and put it on a frozen lake? This may look like a silly question, but Lauri and Anni Vuohensilta — the crazy Finns of Beyond the Press — did it, and it makes a nice guided inquiry activity for exploring energy transfer in the grade 11 physics. Read More...

Physics Labs For Independent Learning

Daniel Muttiah
daniel.muttiah@tdsb.on.ca

My first-year physics professor, Dr. D.S. Scott, in my first year of university said something that has stayed with me over the years. During one of his lectures he asked the question: where is the best physics lab located? There were various responses from different students and his response was a no to all the major labs mentioned. Finally he responded with the statement: the best physics lab is the world around you. I have not forgotten Professor Scott's words of wisdom which have inspired me over the years, both in my learning and in my teaching. Read More...

So You Wanna Go Gradeless…

Ashley McCarl Palmer, WRDSB Teacher
ashley_mccarlpalmer@wrdsb.ca or @physicswithmcp

As we move forward in the pandemic, education is finally taking a huge leap as many educators abandon their old ways of teaching and trying something new. For some, they have heard about this wave of people going “gradeless” and they are curious about what it is about. For others, they look at their old methods of assessing and recognize that tests may not cut it anymore… and if you get rid of tests (or things that were traditionally numerically marked) then what goes into a student’s grade? Or perhaps more importantly, why even grade them at all? Read More...

Using Quizlet with your Virtual Classes

Steven Fotheringham, Halton District School Board
fotheringhas@hdsb.ca

As you prepare your classes for the new quadmester, you will be looking for new ways for your students to make connections with one another. Whether your classes are in-person, virtual or blended, you can try Quizlet in your classes. I have had a lot of success integrating Quizlet Live into my virtual teaching practice. Here's a quick overview of how Quizlet can be used in virtual classes. Read More...

Review: Phyphox

Robert Prior, ePublisher of OAPT Newsletter
science@robertprior.ca

How do you conduct physics experiments remotely? Most students will not have access to much in the way of measuring equipment, but most of them have smartphones that contain a variety of sophisticated sensors. Phyphox is an award-winning app developed at RWTH Aachen University that allows access to these sensors for performing physics experiments. Read More...
©Ontario Association of Physics Teachers Contact the Newsletter