.boxed { border: 1px solid green ; }
Magnetism

Science Communication Presentations from the University of Guelph

Orbax, Production Specialist for Physics Education Content, Department of Physics, University of Guelph
orbax@uoguelph.ca

Greetings educators! Orbax here from the Department of Physics at the University of Guelph.

When I went to university for physics in the late 90s, “science communication” as we know it now did not exist. Our science communicators were there, but it seemed like it was much more of a journey to find them then than it is now. Television (both high-end productions and cable access), radio, print media… these were the ways in which we found science communication mostly born out of a necessity to demystify some of the more obscure elements of our profession as well as a way to combat some of the pseudoscience that was rampant in the media. Read More...

This Is Why…

Joanne O’Meara, Professor, Department of Physics, University of Guelph
omeara@uoguelph.ca

When people think about what physicists do, they often jump directly to the esoteric, like quarks or globular clusters, and don’t necessarily see the myriad connections of physics to our everyday experiences. I’m not criticizing those among us devoted to the esoteric, but I do worry that we are missing out on inspiring and engaging with a large fraction of the science-curious by not taking the time to explore some of the fascinating physics on display in the natural world. As physicists, we are practiced at the art of asking ourselves Why? when we observe something beautiful, unusual, or unexpected, and the feeling that comes from figuring out the answer is what keeps us exploring. I love being able to bring these little explorations into my classroom, especially when I’m teaching first-year physics to biological science students, as helping them to see the relevance of what they are learning can have a profound effect on their motivation. From the beauty of a double rainbow, to penguins using bubbles to reduce drag, or the effect of polarization of scattered light on flies looking for someone/thing to bite, I love that look of wonder and appreciation on my students’ faces when we take a short tangent to extend our learning in optics or mechanics. Read More...

Controlled Experiments with Three Factors in SPH4C Grade 12 College Physics

Tim McCarthy, Teacher, St. Ignatius of Loyola Catholic Secondary School
mccarthyt@hcdsb.org

Controlled experiments with three factors are a great way for physics students to practice identifying and testing factors that may affect a situation. They provide an excellent opportunity to practice the Scientific Investigation Skills found in Strand A. The students are provided with a situation, brainstorm possible factors that may affect the situation, reduce the list of factors to three that can be tested in the physics lab, develop hypotheses, design procedures to test the factors, test the factors, analyze the data, perform experimental error analysis, and draw conclusions on the effects the three factors have had on the original situation.

My struggle has been to find situations that easily fit this format and that also match the curriculum specific expectations. I have created one three-factor controlled experiment for each of the six units in my 12C physics course. The three-factor experiment in the first unit is used as assessment for learning (formative) to teach the students how to do a controlled experiment. The remaining five experiments are used as assessment of learning (summative). Simulations are used for some experiments as I do not have the necessary equipment to perform all them in the lab. Read More...

Hands-On Fields

Roberta Tevlin
Teacher at Danforth CTI, Manager OAPT Newsletter

The concept of fields is fundamental to our modern understanding of physics and the Ontario curriculum dedicates one of the five units in 12U physics to Gravitational, Electric and Magnetic Fields. I have struggled for many years to find ways to make this important but abstract concept more tangible to my students. Here is what I have come up with so far. Read More...

An Inexpensive Magnetometer

Dave Doucette (OAPT President) Richmond Hill High School, Richmond Hill, Ontario

Several years ago I was in need of a cheap, easily assembled, sensitive magnetometer. The intent was to design a tool for students to palpably observe the magnetic field around a current carrying conductor. Deflection of a compass needle lacked the ‘wow factor’ I sought. The solution turned out to be beautiful in its simplicity. Read More...

Induction Puzzle

Leigh Palmer, Simon Fraser University

Here's a demonstration that will make your students think more carefully about the meanings of the terms voltage, electromotive force, and potential difference. A transformer is necessary for the demonstration. Read More...

The World’s Simplest Motor

John Pitre, University of Toronto

In the December 2004 issue of The Physics Teacher, Christopher Chiaverina described a motor consisting of four components: a battery, a cylindrical rare earth magnet, a small piece of copper wire, and a steel nail. Since I know that many of our members do not have ready access to this journal, I have essentially reproduced his article here. Read More...

An Electric Guitar Pickup

Peter Scovil, Waterford, ON
petescov@enoreo.on.ca

I like music, and enjoy playing the guitar, so the following demo caught my eye (or ear?). It was in the Jan. '95 issue of The Physics Teacher (p.58) by G.R. Davies of South Africa. It is a good example of electromagnetic induction that is easy for students to understand. Read More...

Lenz’s Law with Plumbing Pipes

John M. Pitre, Department of Physics, University of Toronto
pitre@faraday.physics.utoronto.ca

In the January 1997 issue of The Physics Teacher, two articles appeared detailing the use of rare earth magnets to demonstrate Lenz’s Law in the classroom. The principle involved is that a permanent magnet falling through a tubular conductor will induce a current in the conductor and hence a magnetic field which will oppose the magnetic field of the permanent magnet and thus slow its rate of fall. This article gives variations of the methods discussed in those papers. Read More...

A Multi-Purpose Instrument

Tomasz Dindorf and Wojciech Dindorf
Donaufelderstr. 252/24, 1220 Wien, Austria

(Editor's note: This article is reproduced, with permission, from a delightful little book, "The Sun on the Floor -Physics experiments that can be performed at home." This 68-page book describes 58 experiments that can be accomplished with simple apparatus. There are many drawings and photographs to illustrate the experiments. A single copy of the book can be ordered for only $10 U.S. from the authors at the address above, and 20 copies can be obtained for $100 U.S.) Read More...

The Levitron

Alan Hirsch, Port Credit SS, Mississauga

What physics toy have you seen that can attract the attention of every passerby in a mall during the December shopping rush? And what toy can you expect your physics students to exclaim “hey, cool” when they see it? The answer to each of these questions is the same: The Levitron: The Amazing Antigravity Top. Read More...

Big Ben — Lenz’s Law and the Cow

John Childs, Grenville Christian College, Brockville

Two demonstrations from John Childs. Read More...

Huge Pendulum, Centre of Mass, and Magnetic Force

John Earnshaw, Trent University

The author presents three demonstrations: a large pendulum, the centre of mass of a person, and the magnetic force on a beam of electrons. Read More...

The World’s Simplest Speaker

Frank Allan, Science Co-ordinator, Ottawa Board of Education

The world’s simplest speaker can be constructed in a matter of seconds. Read More...

The World’s Simplest Motor

Robert Ehrlich, Physics Department, George Mason University

The world's simplest motor can be constructed in less than five minutes. Read More...

The D.C. Motor

Peter Scovil, Waterford District High School

Have you had difficulties explaining to students the complexities of the D.C. motor? Read More...
©Ontario Association of Physics Teachers Contact the Newsletter