.boxed { border: 1px solid green ; }
Diversity

Free Lesson Extensions Bring Grade 11 Physics to Life for Diverse Students

Kim Jones, Associate Professor of Chemical Engineering at McMaster University
kjones@mcmaster.ca

It’s the question students have been asking for generations, in math classes, in science classes, and definitely in Physics classes… “Miss, when am I going to use this?” They rub their faces and pull on their hair in despair, unable to connect the laws of motion to their day-to-day dreams of the future.

Studies have shown that students are more motivated and interested when they are able to draw a straight line between their learning and its application to helping to solve real-world problems. This is especially true for girls.

When we look at the problem of girls being under-represented in engineering programs across the country, one of the pain points we can identify is that girls are more likely to opt out of grade 12 physics, a mandatory course for entry into post-secondary Engineering programs. Although there are systemic reasons for this, one of the easiest fixes is to make grade 11 physics curriculum more real-world solution focused. Read More...

Review: How Far Away Is It?

Robert Prior, ePublisher OAPT Newsletter
science@robertprior.ca

There’s a lot of good physics (and math) embedded in the grade nine space unit, if you know where to look for it. David Butler is a retired computer scientist who is fascinated with space, and he’s applied his mathematical background to explaining, in simple terms, what’s behind the fancy pictures we see from NASA, and how we know what we know about the universe. To do this he’s created a series of video books focusing on different topics, as well as hundreds of short classroom-ready video clips on topics ranging from astronomy to quantum mechanics. Read More...

Diversity

Adam Mills, President of the OAPT
adam_mills@wecdsb.on.ca

Being a heterosexual, Caucasian male I am hardly an authority on diversity; however, my school community consists of many diverse cultures, races and religions. As such I have been attempting to make a conscious effort to better connect with my students, by ensuring that they gain an understanding that there do exist many physicists that are indeed non-Caucasian, non-male with various sexual orientations. This brief article will explore a few of the techniques, resources and ideas I am implementing in my classroom that you can easily incorporate into yours tomorrow! Read More...

Demonstrating Diversity in Physics Content Videos

Roberta Tevlin, teacher at Danforth CTI
roberta@tevlin.ca

I like to use videos that are just a few minutes long in my classes. I use them to supplement the hands-on activities and show physics that is too dangerous, difficult or expensive to do in the classroom. However, I recently noticed that almost all of the videos I use are hosted by people who are white and male. This reinforces a pervasive stereotype about what sorts of people do physics — which is not a message that I want my students to receive.

I went on a hunt for videos that could change that perception and I have put together a spreadsheet of what I have found so far. Read More...

Increasing the Gender Diversity in Lecture Content

Sara Cormier, Instructional Assistant, McMaster University
cormiesl@mcmaster.ca

At the 2018 OAPT Conference held at IQC, University of Waterloo, I had a very lovely, inspiring conversation with Roberta Tevlin. As a side note, I always have productive chats at the OAPT conference with a variety of people (this is a shameless plug to encourage everyone to register for the 2020 OAPT conference at McMaster. It was during this conversation that we chatted about how to increase the diversity of the examples we share in class. Afterwards Roberta spearheaded the idea to create a resource to share with everyone that compiles diverse examples of physicists. She pulled Michelle Lee, Sara Naudts and me in to help. The resource is really great and well laid out. I am supremely impressed with it (I had only a small contribution in creating the resource) and have used it to increase the diversity in my own teaching which I describe below. To learn more and use this great resource yourself, I encourage you to read another OAPT article (after you finish reading this one, of course), written by Roberta. You are also welcome to use any of the examples I’ve used below. Read More...

Equity Through Understanding: Electric Current & Potential Difference

Dave Doucette,OCT
Richmond Hill HS (retired)
STEAM Education Consultant, FAST Motion Studios, Toronto
doucettefamily@sympatico.ca

A 2016 paper1 surveying Purdue University electrical engineering undergraduates discovered “…seniors were more confused than novices about physical concepts such as charge, current and electrical field.” The study did not reveal precise reasons but did caution that well-intentioned but incorrect analogies “usually transform into foggy concepts students carry towards graduation (p4).” This echoed a 2008 engineering-science paper2 investigating obstacles to concept attainment of direct current. One barrier was weak modeling of the phenomenon, “…and identified the cause of this deficiency as lack of direct experience which can be remediated by creative instructional design.”

The actual mechanism of potential difference and direct current involves surface charge distribution. The challenge to develop this conceptual foundation is its invisible nature. Students cannot directly observe charge and ‘creative instructional design’ is needed to carefully scaffold inferences from static to moving charge. This paper suggests a series of activities to create the experiential background necessary for robust modelling of surface charge distribution. This conceptual foundation will be applied to series and parallel circuits to reinforce Kirchhoff’s laws. Read More...

We Can Fix the Gender Imbalance in Physics

Chris Meyer, OAPT President
christopher.meyer@tdsb.on.ca

We Can Do Better
For many years I really didn’t know what to do about the obviously small proportion of female students in my school’s physics classes. At the time, I think I managed to convince myself that it wasn’t my problem or perhaps that it was beyond my ability to change. Fortunately, I was wrong on both counts. We can improve the gender balance in our physics classes using two strategies: encouraging grade 10 girls to take physics with presentations and an after-school activity; and encouraging grade 11 girls to continue with physics by directly addressing gender issues. Read More...

Demonstrating Diversity in Science

Sara Cormier, Michelle Lee, Sarah Naudts, Roberta Tevlin

The four of us, like many of you, are concerned about how slowly the world of physics is moving towards diversity. Over the summer we put together some resources to make it easier to demonstrate to our students that there is a place for everyone in physics. Read More...

Rosalind Franklin, DNA and the Interference of Light

Roberta Tevlin, Editor OAPT Newsletter, Teacher at Danforth CTI
Roberta@tevlin.ca

We need to incorporate more diverse examples of scientists in our courses. Sara Cormier (Physics Instructor at McMaster University) and I are trying to develop resources that will help teachers to do this. (If you would like to be a part of this — please send me an email!)

I started to compile a data base of good examples when I found myself completely distracted by the work of Rosalind Franklin. Her work on the X-ray crystallography of DNA fits perfectly into a lesson about the interference of light! As well as showcasing an important female scientist, an examination of her work can deepen students’ understanding of interference patterns and it highlights a very important connection between biology, chemistry and physics. I found a couple of short videos and a really simple, cheap demo that shows why the interference pattern formed by DNA provides clear evidence of its helical structure! Read More...

“Why Am I Not Getting This?” Feelings of Competence Among Young Women in Physics and Strategies to Strengthen These

Lindsay Mainhood, M.Ed., OCT, current research assistant at Queen’s University
lindsay.mainhood@queensu.ca

As a physics teacher, have you heard your students question their competence in physics? Have you heard them doubt their competence, or even express defeat in understanding physics? For reasons that may be obvious, such feelings among students can be adverse to their success and continuation in physics. Such feelings among young women can be understood as particularly detrimental on the journey toward gender equity in physics.

To explain why feeling competent is an important aspect of students’ success in physics, a research-based rationale is helpful to consider. Physics identity, a concept suggested by Hazari, Brewe, Goertzen, & Hodapp, can be described as the extent to which someone feels like they are a “physics person” (2017, p. 96). A strong physics identity is dependent on the development of four feelings (interest, competence, performance, and recognition). The importance of students’ development of physics identity is substantiated by the fact that physics identity has been shown to strongly predict students’ academic success in physics (Bliuc, Ellis, Goodyear, & Hendres, 2011) and career choice (Hazari, Sonnert, Sadler, & Shanahan, 2010). Feelings of competence, one component of physics identity, are the focus of the article. Competence can be defined as the feeling of being capable of understanding physics concepts.

In this article I share my research study’s findings related to young women’s feelings of competence during their high school physics education. This article’s aim, then, is to connect teachers to their students’ feelings of competence, or lack thereof, and to underscore the importance of helping students to feel competent for success and continuation in physics. Finally, I offer practical recommendations for teachers to help support feelings of competence in students in the physics classroom. Read More...

Fostering Physics Identity to Support Young Women in Physics: A Focus on Interest

Lindsay Mainhood, OCT, recent M.Ed. graduate and current research assistant at Queen’s University.
lindsay.mainhood@queensu.ca

The underrepresentation of women in physics is apparent at all levels of education and in nearly all countries of the world. When looking at the metaphorical leaky pipeline that supplies the field of physics with women, the largest “leak” or loss of young women from physics occurs in the period between the end of secondary education and the first year of post-secondary education (McCullough, 2002). At this time, we see women’s participation in physics education decline from 36% to 20% across Canada, a 16% loss of women from physics education (NSERC, 2010). According to other physics education research, high school is the period of education most likely to spark young women’s physics interests (Ivie, Cuzjko, & Stowe, 2001). This is of educational concern given that most young women reject physics in the period immediately after experiencing high school physics (Hazari & Potvin, 2005).

How might physics education be failing at recruiting and retaining young women? This article focuses in on findings from a study that sought to understand girls’ experiences of barriers (any factor that negatively influences their ideas and feelings about studying physics) in high school physics education. Nine women, who are now studying in a variety of Ontario university programs at undergraduate and graduate levels, met four times in a group setting as part of the research study to discuss their experiences in high school physics classes. This article offers teacher-oriented recommendations based on factors that influence young women’s ideas and feelings about studying physics. Read More...

Gender in Ontario Physics Classrooms

John Caranci, Lecturer in Physics and Chemistry Teaching, C.T.L., Ontario Institute for Studies in Education University of Toronto
john.caranci@utoronto.ca

What does the gender balance in high school physics look like in Ontario? According to the Ontario Ministry of Education, 7,590 women earned a grade-12 physics credit in 2005/6 and nine years later there were 9,252. That is a 24% increase! At first glance it looks great. However, the increase for men was close to the same and from 2005 to 2015 the percentage of grade 12 credits in physics earned by women has remained steady at 31 ± 1 %. The good news is that while school population has decreased, the number of physics credits has risen from 23,542 to 25,589. The bad news is that the gender imbalance has not changed. Read More...

PER Corner: Fixing the Gender Imbalance in Physics

Chris Meyer, OAPT VP teaching and learning, Assistant Curriculum Leader York Mills C. I.
chris_meyer1@sympatico.ca

I have a problem in my physics classes: by grade 12, only one third of the class is female. I used to think of this as a fact of life, or something beyond my power to change, but now I am sure that is wrong. Too many girls are missing out on some of the best training in critical thinking available in high school. Research suggests why: girls experience physics education differently than boys do. By understanding these differences, I am modifying my classroom to create an environment that supports girls and encourages their future participation in physics. Read More...
©Ontario Association of Physics Teachers Contact the Newsletter