November 29, 2023 Filed in:
ArticlesMilica Rakic, Essex DHS
mica@opusteno.com
Roberta Tevlin, retired
roberta@tevlin.ca
In order to prevent the worst of climate change, the emission of greenhouse gases (GHGs) has to be reduced as fast as possible. The enormity of this task can look overwhelming and can lead to climate despair. However, we already have the technology we need and a great source of information about this can be found on the website of
Project Drawdown where they provide details of almost 100 solutions.
The goal of Project Drawdown is to show how we can ‘drawdown’ the emission of GHGs and then ‘drawdown’ the amount of these gases that are already in the air. This article shows how you can have your students examine 19 of these solutions which are involved in the production and use of electrical energy. This exercise is a good fit for the electricity unit in grade 9 science, the climate change unit in grade 10 science, the electricity unit in grade 11 university physics, and the energy transformation unit in grade 12 college physics.
Read More...Tags: Climate, Electricity, Energy, STEM
February 05, 2023 Filed in:
ArticlesEric Haller, Editor-in-Chief of the OAPT Newsletter, Peel District School Board
eric.haller@peelsb.com
Robert Prior, ePublisher of OAPT Newsletter
science@robertprior.ca
There’s a lot of physics hidden in the grade nine curriculum, if you know where to look. For example, the inverse-square law appears in the space unit, as part of the reason scientists know how far away stars are. It is often presented as a given, but deriving it from experimental evidence is a neat way to use a hands-on activity to show the process of science.
How did physicists measure light before they had photometers? John Joly, FRS, invented a comparative photometer over a century ago. We’ve used this simple device to explore the inverse-square law in a totally low-tech way.
Read More...Tags: Astronomy, Destreamed, Light, STEM
February 05, 2023 Filed in:
AnnouncementsJim Chen, Physics Graduate Student, University of Toronto
jim.chen@stemfellowship.org
The Canadian Young Physicists’ Tournament (CaYPT) is a national high school research-based competition that also serves as a selection competition for the International Young Physicists’ Tournament (IYPT). In teams of 3-5, students conduct research on 10 open-ended physics problems with no definite solution. Students develop their own theoretical model, apply their physics knowledge and debate with other teams about their solutions to the problems.
CaYPT is looking for jurors to evaluate student presentations and give students a score based on the quality of their theoretical model, experimental results and overall presentation, including their discussion with other students. An honorarium of $70 is provided per half day of juror work.
Read More...Tags: Contest, STEM
October 22, 2022 Filed in:
ArticlesOrbax, Production Specialist for Physics Education Content, Department of Physics, University of Guelph
orbax@uoguelph.ca
Greetings educators! Orbax here from the Department of Physics at the University of Guelph.
When I went to university for physics in the late 90s, “science communication” as we know it now did not exist. Our science communicators were there, but it seemed like it was much more of a journey to find them then than it is now. Television (both high-end productions and cable access), radio, print media… these were the ways in which we found science communication mostly born out of a necessity to demystify some of the more obscure elements of our profession as well as a way to combat some of the pseudoscience that was rampant in the media.
Read More...Tags: Forces, Kinematics, Magnetism, Motion, STEM
February 09, 2022 Filed in:
ArticlesOrbax, Production Specialist for Physics Education Content, Department of Physics, University of Guelph
orbax@uoguelph.ca
Greetings everyone! Orbax here. For those of you who don’t know me, I’ve been a member of the Department of Physics at the University of Guelph as an instructor for over 13 years now, and most recently as a production specialist in physics education content. Just like you, I love physics and I love teaching physics. I remember when I was young laying in my parents’ bed and poring through a book my father had from his university class on astronomy. I had very little understanding of what I was looking at in those pictures but I knew that the fantastic images in front of me showed a universe that laid just beyond the clouds, one that captured my imagination and that sent me down a path to becoming a physicist.
Since then my career has taken me to many places but I have never lost the fascination I’ve always held for outer space. I feel there are few things more galvanizing to scientists and interesting to the population as a whole than space exploration. As such, I’ve started a video series of monthly ‘Star Gazing Guides’. Very much in the tradition of the old
Jack Horkheimer: Star Gazer series (does anyone else remember those?), we take a look around the night sky for upcoming events of interest. The videos are very much aimed at the general population with little or no astronomy experience, but as a physics teacher, I try to use a portion of the video to slyly backdoor some actual physics education content. We talk about wavelengths of light, rotational axes, basic planetary interactions, and try to explain things like the solstice or an eclipse.
Read More...Tags: Astronomy, Cosmology, STEAM, STEM, Technology
September 17, 2017 Filed in:
ArticlesNassi Rafiee, teacher Toronto DSB
Nassi.rafiee@tdsb.on.ca
Many grade 12 physics students plan to pursuit engineering in their post-secondary studies. Surprisingly, many lack a clear idea about the required skillset and what to expect in their next 4 years of education.
Last year I came up with the idea of having students design a mechanical pinball machine that demonstrates the mechanics concepts in grade 12. It was originally intended to focus on team building, engineering design process, physics calculations and writing skills, however as soon as I shared the idea with students, they got so excited that they formed their groups immediately and insisted that they wanted to build it too.
Read More...Tags: Energy, Kinematics, Momentum, Motion, STEM
March 10, 2017 Filed in:
ArticlesDave Gervais, Chair STAO Safety Committee, construction worker
The options for your students that drop out of high school or graduate with high school are very limited. After rolling through the low paying jobs of the service sector, restaurant or retail business, construction work looks pretty good. How do the science and mathematical principles and calculations in construction compare to that taught in our science classes?
Read More...Tags: Forces, Pedagogy, STEM
March 01, 2017 Filed in:
ArticlesStacey Joyce, Program Manager at Partners In Research Canada (PIR)
I’m sure that you employ a variety of tools and strategies in your classroom, including inquiry activities, independent or group projects, “assessments as, for and of” learning… the list goes on. But how do you and your students answer the questions they come up with during or after the initial inquiry activity? What types of resources do you teach students to use for their independent research? How do you introduce the students to career options that use Physics?
Here’s where video calls and webinars come in, and don’t think that you can’t afford these options — they’re free from Partners In Research Canada (PIR)!
Read More...Tags: Professional Development, STEM, Technology
January 12, 2017 Filed in:
ArticlesDave Doucette, OAPT Vice-President
doucettefamily@sympatico.ca
Lisa Lim-Cole OAPT Past President
l.limcole@gmail.com
A recent
OAPT Newsletter article from John Caranci laments the fact that over the past decade, despite an increase in the total number of Ontario grade 12 physics credits, the percentage of females has remained at around 31%. John insightfully suggests looking at elementary education and we agree. But to better understand the challenge we need to have a good understanding of the shifting landscape in elementary education. The inquiry-based learning approach which anchors the curriculum is now being stressed by a newcomer to the field: STEM education. The good news is that STEM and inquiry are totally complementary — and both require habits of mind exemplified by physics instruction. If we work together to support K-8 educators in successfully marrying inquiry with STEM education, we are likely to see far more students selecting secondary physics course, including more females. A worthy goal!
Read More...Tags: STEM
December 17, 2016 Filed in:
ArticlesSteve Fotheringham, OAPT Exhibit Hall Coordinator, Teacher Oakville Trafalgar High School
fotheringhas@hdsb.ca
Have you ever looked at your schools’ course offerings and noticed that some need is not being met? Perhaps the course selection for your applied-level learner is uninspired or there are no elective courses that encourage students to apply their imagination or creativity. Perhaps, what you are looking for does not exist on the list of courses in Ontario.
I’ve had this thought many times and have since had the privilege of introducing two new courses to my school — “Engineering Design” and “Leadership”. Both made use of the incredibly flexible IDC course code.
The purpose of this article is to share with you a few of the lessons (in no particular order) that I have learned along the way which in turn may help you introduce a new course in your school.
Read More...Tags: Pedagogy, Professional Development, STEM
September 11, 2016 Filed in:
PER CornerChris Meyer, OAPT VP teaching and learning, Assistant Curriculum Leader York Mills C. I.
chris_meyer1@sympatico.ca
I have a problem in my physics classes: by grade 12, only one third of the class is female. I used to think of this as a fact of life, or something beyond my power to change, but now I am sure that is wrong. Too many girls are missing out on some of the best training in critical thinking available in high school. Research suggests why: girls experience physics education differently than boys do. By understanding these differences, I am modifying my classroom to create an environment that supports girls and encourages their future participation in physics.
Read More...Tags: Pedagogy, STEM, Diversity
October 30, 2015 Filed in:
ArticlesMargaret Scora, Teacher at Monsignor Paul Dwyer CHS
mscora@sympatico.ca
It is very important to have our students engaged in the classroom in order for deep learning to occur. Your students need opportunities to use their creative spark and build on their 21st century learning skills.
Peter Benson’s TED talk does a great job of presenting how important this is.
Ideas for projects proliferate but many of these are time-consuming, expensive and beyond the skills of an average student and the tools of an average physics classroom. However, your students can build a catapult with K’Nex™ in just one class with virtually no prep and no trips to the wood shop.
Read More...Tags: Contest, Energy, Projectile Motion, STEM
October 07, 2015 Filed in:
ReviewJames Ball, OAPT Membership Chair, Physics Teacher, John F. Ross C.V.I.
James.Ball@ugdsb.on.ca
Rating: 4.5 out of 5 luminous gaseous bodiesThe Martian is a very entertaining movie, which will appeal to a wide audience. As a physics/science/science teacher I found it to be particularly enjoyable.
I’m going to review it according to the science, technology, engineering and math that it presents (yup that’s STEM).
Read More...Tags: STEM
August 30, 2015 Filed in:
PER CornerChris Meyer, OAPT VP teaching and learning, Assistant curriculum leader York Mills C. I.
Christopher.meyer@tdsb.on.caOK, let’s begin by admitting that we are all playing a numbers game. Or, at least, we make our students play this game where they bet their marks on correctly figuring out the last digit to write down in their answers. (The classic numbers game is an illegal betting pool where people try to guess the last few digits of some “random” number like a stock price listing.) To make it sporting, we teach our students rules for identifying the significant digits in a given number and rules for deciding how many digits to keep after a calculation. Now, you likely know what happens next. For the rest of the year we are plagued by noisome questions during lessons and tests: “How many significant digits does this have?” “Is this two or three?” “Mr. Meyer, you started with 1000 and your final answer was 17.5 m/s ...” Sound familiar?
Read More...Tags: Pedagogy, STEM
March 23, 2015 Filed in:
ArticlesRoberta Tevlin, Danforth Collegiate, Past President of OAPTCompetitions are a great way to motivate students, to provide a rich learning experience and incorporate the STEM disciplines and problem-solving approach. Unfortunately, it can be hard to find competitions that are appropriate. They need to be challenging but not impossible. They must use cheap materials and tools and should not require significant building skills. If possible, they should require precision in measurement and calculations. One competition that does all of these; and not only that, it has curriculum connections ranging from grade 9 Science to grade 12 Calculus, is “Barges”.
Read More...Tags: Forces, Pedagogy, STEM
November 01, 2009 Filed in:
Demo CornerBonnie Lasby Physical and Engineering Science Dean’s Office University of Guelph
blasby@uoguelph.ca

I prefer to do this as an activity as opposed to a demonstration, and have found that it works very well for students in Grades 7 to 12 visiting the University. I start with a discussion about sound and then compare a speaker to the human ear. In the discussion on speakers, I also talk about magnets and how they work, and I explain the difference between permanent magnets and electromagnets. After this discussion, I explain how to make speakers using a plastic cup, a magnet, and a coil of wire. Each student makes his/her own speaker and then tests it.
Read More...Tags: Electricity, STEM, Waves and Sound
January 01, 1998 Filed in:
Demo CornerGeorge Vanderkuur, WICED Centre, TDSB
georvand@enoreo.on.ca
Bricks, books, or metre sticks are all you need for this neat demonstration. As illustrated, the top brick projects by half its length and subsequent bricks project 1/4, 1/6, 1/8, et. Brick lengths. After
n bricks, the cantilever will project a distance of
d = 1/2 + 1/4 + 1/6 + … + 1/(2
n). This may be simplified to
d = 1/2 (1 + 1/2 + 1/3 + … + 1/
n). For four bricks, the projected distance is 1.04 brick lengths, and for
n = 5, the distance is 1.14 brick lengths (so that the top brick is clearly out beyond the edge of the table).
Read More...Tags: STEM